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1. INTRODUCTION

The purpose of this paper is to investigate weighted mean convergence
of interpolating polynomials based on the zeros of generalized Jacobi
polynomials.

Our approach is based on the weighted mean convergence of generalized
Jacobi series, which is studied in Part I of this paper [30]. The main result
of [30] gives an inequality of the type

IS, U, <clfV,, (1.1)

where S,(f) is the nth partial sum of generalized Jacobi series of f, U and
V are suitable weight functions, and ¢ is a constant independent of # and
/- In this part, we use (1.1) to prove an inequality of the type

l h
f IPlPwdx<c Y [P(x)l” dpne 1< p< +00, (1.2)
1

k=1

where P is a polynomial of degree at most n—1, x,, are the zeros of
orthogonal polynomial p,(w, x), and ¢ is a constant independent of #» and
P. An inequality of this type is called a Marcinkiewicz—Zygmund type
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inequality. It enables us to prove the mean convergence of the Lagrange
interpolation. See Part I for the background and history.

After Nevai’s article [15], in which he found necessary and sufficient
conditions for weighted mean convergence of Lagrange interpolation based
on the zeros of the generalized Jacobi polynomials, the weighted mean
convergence of various other interpolating polynomials have been studied,
including the Hermite and Hermite—Fejér interpolating polynomials.
However, the method in these works (see [ 17, 18, 24, 257) requires detailed
information on the explicit formulas of these interpolating polynomials,
and various terms in these formulas and certain quadrature sums have to
be estimated very carefully. So far only those interpolating polynomials
based on the zeros of the Jacobi polynomials (or slightly general ones)
have been successfully handled, and it seems very difficult to apply this
mehod to the more general cases. As an alternative approach, we show that
the inequality (1.2) can be extended to the polynomials of degree at most
mn — 1 with the right-hand side containing derivative values up to m — 1
order. Thus we are able to prove the weighted mean convergence of various
interpolating polynomials based on the zeros of the generalized Jacobi
polynomials. It seems that the method we present is the “right one” for
investigating the mean convergence of the interpolating polynomials. Not
only is it more powerful, but it is also simpler than the previous method,
because we do not need knowledge of explicit formulas in order to apply
the method. For the historical account, we refer to [1, 6, 7, 10-15, 17-19,
23-31].

The paper is organized as follows. The next section is devoted to
notations and preliminaries. The Marcinkiewicz-Zygmund inequality and
its extension are presented in Section 3. The mean convergence of the
interpolating polynomials is discussed in Section 4.

2. PRELIMINARIES

Let dou = a'(x) dx be a nonnegative distribution on [ —1, 1]. Let p,(dx, x)
be the sequence of polynomials othonormal with respect to dx. The zeros
of p,(du) are denoted by x,,(dx) and the following order is assumed:

1> x,,(de) > x,,(do) > - > x,,(do) > — 1. (2.1)

The Christoffel function 4i,(dx) is defined by

n-1 —t
A, (da, x):[ Y pilda, x)] . (2.2)

k=
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The numbers 1,,(dx)=1,(dx, x,,) are called the Cotes numbers. By the
Gauss—Jacobi quadrature formula [22, p. 471,

n

3 Plri(d) Akn(dzx)=Jl P do (2.3)

holds for every polynomial Pe IT,, _,. Here, [T, is the space of polynomials
of degree at most .

Let m > 1 be a given integer. For a (m — 1)th differentiable function f, the
Hermite interpolating polynomials corresponding to the distribution d,
denoted by H,,,(dx, f), are defined to be the unique polynomial of degree
at most mn — | satisfying

HNda, f, X)) = fP(x0),  O<jsm—1, 1<k<n,  (24)

where xg, =x,,(dz). When m=1, H, . (dx, f) are the Lagrange inter-
polating polynomials, we write L, (dx, f)=H, ,(dx, f).
IfO< p< 400, then feL?if || f]l, < + o where

in,=(f

lip
lf(t)!”dt>, 0<p<+o0,

and

1Al = esssup [ f(2)].

te[—1,1]

Of course, when 0 < p <1, |-|, is not a norm; nevertheless, we keep this
notation for convenience. We also use the notations |f-|{,, , and {/-]
defined by

lar=(] ra) o in,=(f

w, p?

17w d:)m, (2.5)

even for 0< p< 1,
Let w be a nonnegative function. We call w a generalized Jacobi weight
function (we GJ), if it can be written as

r+1

w(x)=T] Ix— 2" (2.6)
i=0
for xe[—1,1] and w(x)=0 for |x| > 1. Note that w is not necessarily
integrable. We call dx a generalized Jacobi distribution when o =yw,
where we GJ and w is integrable, i is a positive continuous function in
[—1,1] and the modulus of continuity o of i satisfies

j ——~a’t<+oo
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Sometimes we write /7;(w) or I';(dx) in place of I'; to indicate that they are
parameters of w or du, respectively. Orthogonal polynomials corresponding
to generalized Jacobi distribution are called generalized Jacobi poly-
nomials. When 7,=0, 1 <i<r, and =1, “generalized Jacobi” reduces to
“Jacobi.”

Throughout this paper, we use letters ¢, cy,¢;,.., etc, to denote
constants depending only on weight functions and other fixed parameters
involved, but their values may be different at different occurrences, even
within the same formula. The notation 4 ~B means |4 'B/<c¢ and
|[AB | <c.

Let dx be a generalized Jacobi distribution. Let S,(dx, /') be the partial
sum of the generalized Jacobi series, i.¢.,

n

1
Suda, f,x)= 3 cx(f) pilda, x),

k=0

where
1
e f) =_[ ‘ F(x) pulde, x) do.

The main result in [307], which is essential for this paper, is the following.

THEOREM 2.1. Let du be a generalized Jacobi distribution, and let u and
w be generalized Jacobi weight functions. Let 1 < p < + oo. Then

ISty £ Wl p S € W ftll e, (2.8)

Sor every f such that || full ,, ,< + oo if and only if

wla'e L', u 92'elL!
wioe' JU=x7) "Pael!,  u Yo JT—x) o el (29)
and
w(x) < cu(x). (2.10)

In the following, we list those properties of the generalized Jacobi
polynomials that are used in this article. For the proof of these properties
and the extensive study of generalized Jacobi polynomials, see [2] and
[14]. For we GJ in the form of (2.6) we define

2ly r

w,,(x):(\/l—x+%> 11 (lx—l,-|+%) ‘(1/1+x+%>~ e

i=1
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For do being a generalized Jacobi distribution, we also denote the corre-
sponding one for o' =yw as a, = yw,.

LEMMa 2.2, Let do be a generalized Jacobi distribution. Then for every
positive integer n

—1,2
(e, )| < xyx) 2 <\/1 —x2+%) (212)

uniformly for —1<x<1 (2, Theorem 1.1, p. 226],

A (dx, x)~%az,’,(x)<. /1—x+%><\/1 +x+%> (2.13)

uniformly for —1 < x <1, in particular

1 r i{da)
)“kn(da) ~ = (1 _xkn)rmd&)+ 12 H (’ti— xknl + —>
n i=1 n
X (14 x,,)/ iz (2.14)

uniformly for 1 <k <n, where x,, = x,,(dx), and [14, p. 170]
1 2 3 /
Ip;,(dd, xlm)l ! ~; [a;z(xkn)] 2 (1 - x:(:n)l4 (215)

uniformly for 1 <k <n.
Let we GJ, for a fixed d >0, we define 4,(d) by

Afd)=[—1+dn% 1 —dn’z]\‘\ U [ti—dn ' t,+dn '],

Vi=1

We use y. to denote the characteristic function of a set E.

LemMa 2.3. [14, Theorem 6.3.28, p.120]. Let we GJ be integrable.
Then for each 0 < p< +cc there exists d=d(p)>0 such that for every
Rell,,

(1 RIl. pPSC I RY 4iar v

3. THE MARCINKIEWICZ-ZYGMUND TYPE INEQUALITIES

We prove the Marcinkiewicz-Zygmund type inequalities in this section.
The essential one is presented in Theorem 3.2 and extension of it in
Theorem 3.3. First we state one lemma which is used in our proof.
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LemMMa 3.1.  Let do be a generalized Jacobi distribution and ue GJ. Let
mz=1, Pell,, ,and | <p< + . Then

n

Y IPLda))” () )< [ VPO ul) da, (31)

k=1 -
where u,, is defined at (2.11), and ¢ depends on m and p.

This lemma is proved in [14, Theorem 9.25, p. 169]; see also [6,
Theorem 51.

THEOREM 3.2. Let Pell,_ ,and 1 < p< + . Let du, dff be generalized
Jacobi distributions and ue GJ, such that

u'"Ya'e L’ w' o JS1—=x?) "y e L, (3.2a)
ua' = cfy, (3.2b)

and

(o /1 —x% " g el (3.2¢)

Then

" 1ip
IlPlld,;,,,Sc( Y. PO (da))]” u,(x(der)) ikn(dfx)) ; (3.3)

k=1
where u, is defined ar (2.11).

Proof. We write x, for x;,(dz) in the following. We have

1
1P, = sup [ P()g(0) dB

igllap.q=1"~

By the orthogonality, the Gauss—Jacobi quadrature (2.3), the Holder
inequality, and Lemma 3.1, we have

t 1
|| Poygtyap=[ Pu)S,(dn gpa 1) de

n

= Z P(xkn) Sn(das gﬂ,a’ l, xkn) ;tkn(da)

k=1

n Lip
<c ( S 1P(xen)|” Al d) u,,(xk,,))
k=n

X |IS,(do, gB'a’ = yu™ Pl 4y o
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We now apply Theorem 2.1 with gf’a’ !, u="” (B ~'a’)'”, and ¢ in place
of f, w, u, and p, and conclude that

1.Sa(det, gB'a’ 1) ™l gy g <€ 8 lap -

The conditions (3.2) become conditions (2.9) and (2.10) under this sub-
stitution. The proof is completed. |

The conditions (3.2} in this theorem seem to be quite complicated at the
first glance. They become even more complicated in the more general cases
discussed in Theorem 3.3. However, as we show later, a special choice of
the auxiliary weight u reduces these conditions to a sole condition (3.2¢).

To state our extensions of Theorem 3.2, we need the following
definitions. Let du be a generalized Jacobi distribution. Associated with dax,
we define a generalized Jacobi weight v by

r()(v):min{os r()(dd)"’%}, rr+l(u)=min{0’ rr+ l(da)+ %} (34)
r(v)=min{0, I',(dx)}, 1<i<r '

We also use v* to denote
=(o' /1 —xHv Yx) (3.5)
From these definitions, it readily follows that

v (x)<¢c and v*(x)<ec (3.6)

THEOREM 3.3. Let m>1, Pell,, |, and 1 <p< +oo. Let da, dff be
generalized Jacobi distributions and ue GJ, such that ua’ € L' and

u' maptm eyt e L1 w ey J1—xH) " a'el’, (3.7a)

uo' = cf (v*) m Ve, (3.7b)
and
(@ J1=x?)""2 pell. (3.7¢)
Then

nPndﬂ,,\c( Y Y (ST xLy Pl

=0 k=1
1ip
x (03 (X)) t(Xe) Akxda)/nf"’) , (3.8)

where x, = x;(dx), u, and v} are defined as in (2.11).
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Proof. We use induction. The case m =1 reduces to Theorem 3.2. We
write (3.7),, to denote the dependency of (3.7) on m. Suppose the theorem
has been proved for polynomials in /1, ,, ,, where m>2. Let now
Pell,, ,. We first note that (3.7),, implies (3.7),,_,. Indeed, by (3.6),
the only condition that needs to be checked is (3.7¢),,_,. Let 1 <i<r,
and f,=(f,+¢t,,,)/2. If I(dx)<0, then both (&' . /1—x2) tm-D»r2
and (a'/1—x?) "2 are integrable on [f,_,,7], and if I'.(dx)=0,
then 2'<c on [f,_,,7]; thus (' /1—x?) """ ~"r2 is dominated by
(2 /1 —x*) "2 g Similarly for i=0 and i=r+ 1. Thus (3.7c),, implies
(3.7¢),, _;.

It is known that H,,,(da, P, x)= P(x); thus from (2.4) we have

P(x)—H, ,,_(da, P, x)=p;" '(dx, x) Q,(x), (3.9)
where Q, e 1, _,. Since it follows from (2.12}) that
|pulde, X) elo'(x) J1=x") "2 xed,(d),

we then have by Lemma 2.3

”P_Hn.m rl(dma P)“(p]/i,pgc I|(al v 1 _xz)i(mil)m‘z Qn“ﬁ[]» 14

"
SC Z IQn(xknnp(1"’11('Xkr1))7(’,'7”p#2
k=1

x un(xkn) 'J'kn(da)’ (310)

where the last inequality follows from Theorem 3.2 with (o' /1-x?) " D ri2 g
in place of ' and uv™ """ 7 in place of u. From (3.9) we get that

P xy) — HYw ', P, )

n,m— |

(m—1)! [p(da, x,,)1" "

Qn(xkn) =

Thus by (2.15), we can estimate the sum in (3.10) by two sums. The first
one is

1 n
n(m/l)p Z '(\/ ]_xlzn)mﬁl P(M7]J(xkn)|p
k=1

X (U:(xkn))('n7 ez un(xkn) A'ku(d(x)v
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where v¥ = (v*),, which is the j=m — 1 term in the right-hand side of (3.8).
The second one is

(m l)p Z | V xlm M\lHirmr;—”](da P,an)‘p

x (v,’,"(xk,.))""” P2 1, (X k) Aaaldt),

which, by Lemma 3.1 with (¢*)™ =D #? y4( /1 —x%)""" in place of u, is
bounded by

i 1/ T= )= H Y D, PY™)™ D2,
<l Hy o (d, PYO*)™ D207 7,

where the second inequality follows from the Bernstein-Markov inequality
(cf. [16, Theorem 5]). Since H, , i(dx, P)ell,, ,,,_,, we have by
induction with (v*) =72 yy' in place of ' that this term is bounded by
the right-hand side of (3.8) with m — 1 replaced by m — 2. The conditions
(3.7),. ., under this substitution are implied by (3.7),, and ua' e L'. Thus,
we have proved that |P—H, ,, (dx, P){ . ,1s bounded by the right-hand
side of (3.8). The desired inequality (3.8) now follows from

HPHd[} p< “P— H,,_m,,, l(da» P)“d{i.p’*‘ “HH. m— l(d:x’ P)“d[f‘p

and the induction. The proof is completed. 1

Since the Hermite interpolation by polynomials is regular, we can find a
nonzero polynomial of degree >mn — 1 such that the right-hand side of
(3.8) is equal to zero. Theorefore, the degree of polynomials in this theorem
cannot be greater than mn — 1.

We now choose a special v in Theorem 3.3 to reduce the conditions. The
result is the following Theorem 3.4, which will be used in proving the
mean convergence of interpolating polynomials. We need the following
conditions on dx,

1 -2
Fo(doz)> —E—m, 1",-(doz)>——:_—f, i<y,
(3.11)
(dx) > _l___l__
dad 2 m+1

THEOREM 34. Let m=1, Pell,,_,, and 1 <p< + o0, Let du, dff be
generalized Jacobi distributions with do satisfying (3.11). If

(@ J1—x2) ™2 el (3.12)
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then there is a generalized Jacobi distribution dy, such that '« '€ GJ and

m--1 n

lip
nPn,,,,,,,sc(z 3 |(\/1—xin)fP(-f'(kazn(dv,xk,,)/n-m> . (3.13)

j=0 k=1
where x,, = x,,(d2), and A,(dy, %) is the Christoffel function ar (2.2).

Proof. By (2.13) and (2.14), if we take u=a' 'y’ in Theorem 3.3
and replace (v*(x,,))”””? by its constant upper bound from (3.6), then
inequality (3.8) implies (3.13). We now define our dy such that the condi-
tions (3.7) of Theorem 3.3 reduce to (3.12) for this choice of u. Let v and
v* be defined as in (3.4). We define 7’ by

1 —1
r,-(U), m2 ri(U)s

I',(3') = min {F,.(da) + '"2_

Fi(dﬁ)—(~m—_51—)-£1“,-(u*)}, 1<i<r, (3.14)
and
. m—1 1 m—1
I;(7")=min {Fi(da)+Tff(l’), —§+—_2—Fi(v),
r,.(d/s)—("’_z”pr,.(u*)}, i=0, r+1. (3.15)

First we show that with y’ so defined, dy =7 dx is a generalized Jacobi
distribution, i.e., 7' integrable. The conditions (3.11) imply that the first two
terms in the brackets of (3.14) and (3.15) are both > — 1. By considering
[(de)=0 and [I(de)<0, 1<i<r, or I(dx)+3>0 and I;(dx)
+1<0, i=0, r+1, separately, we have form (3.12) that I,(df)—
(m—1D)plr{v*)2>—1, 0<i<r+1. Thus we have I';(dy)> —1, 0<i<
r+ 1, which implies that y’ is indeed integrable. From the definition of 7',
we have 0"~ D21 —x2) 12y “Tge, a'o™ Y3y Tgeand f(v¥) (mDeRg

¢y'. The last one is (3.7a) with u=a'"'y’. We also have

— — 3 . 2
w' T Dy 1 xRy

— (a'v"” — lJ‘J’Z,},r — l)q;’2 (U(m - l)/’2(l _ x2)»- 1,2 ,})l — l)q‘r’Z '«,v’ < CV’,

and

ul —qv(m l)q/’Za/ — (aIU(M7 l)/'Z,\/‘/— 1 )q ,},1 < C’))’;
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thus both are integrable and (3.7b) follows. Therefore the only condition
left is then (3.7c), which is the same as (3.12). |

Remark 3.1. 1t is not clear whether the conditions (3.11) are sharp,
although from the results in the Jacobi distributions, conditions of this type
are needed.

4, MEAN CONVERGENCE OF INTERPOLATING POLYNOMIALS

We now consider the mean convergence of the interpolating polyno-
mials. Let s 20, C°[ —1, 1]=C’ denote the space of s times continuously
differentiable functions. Throughout this section we use ¢ to denote

o(x)=/1—x2

Our results are based on the following theorem, which gives the weighted
L? boundness of the Hermite interpolating polynomials defined at (2.4).

THEOREM 4.1. Let m>=1 and 0 < p< +o0. Let du, dffi be generalized
Jacobi distributions with du satisfying (3.11) and

(g) "2 pp'e LY, (4.1)

where t20. Then for fe C" !

m—1

| Honldlt, Nlap p<en’ Y max lo(xe) fPxllin’ (42)
j=0 sksn
in particular,

m—1
N H ol dt, )l ap. p<en® 3 N?f N /. (4.3)
i=0

Proof. First let 1 < p< + oc. Since for every fixed d>0, n~ ' < ¢@(x) on
[—1+dn21—dn 2], it follows from Lemma 2.3 that

| H .. dox, f)“dﬁ, pP&C | H,,.(de, [) XA,,ld)“dﬂ, p
<cen' | H,(d )0 ap, -

We then apply Theorem 3.4 with P=H , (dx, f) and ¢’ in place of f'.
Since 7 € L', it follows from (2.13), (2.14), and Lemma 3.1 that

n n 1
L haldy, ven) < X pilria) [6(x)] ! de(da) < [ &<+

k=1
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Our theorem follows for 1 < p< + . For 0 < p<1, we use one technique
in [15, p. 886]. Let

ﬂ;zﬂ,[l +(p(27p]!(ar(p)m(p—Z);Q]f]'

Then B, < B and B, <7 2 'B'(a’@) "7 2% Therefore df, is a general-
ized Jacobi distribution and it satisfies (2'g) " p¥f, < (d'@) ™ @B’ e
L', that is, f, satisfies (4.1) with p=2. Hence from (4.2),

m 1

”Hnm(daaf)”(lli‘..’.gcnr Z XTEL( |(p(xkn)jf‘j)(xkn)l/n‘/'
j=0 'SEST

Since by the definition of §,

(ﬂ;:l,c‘zﬂll,’p)hr(z P — B/[I + mt?.**l’)l(a/(‘o)m(p- 2],,“2],,‘;'2 -
<2/’f“(2 Plﬁ’[l +(ppl(al(p)4mﬂs"2]’

=12

and B'e L' as df is a generalized Jacobi distribution, we have §,'?g''"7 ¢
L7 P Therefore by the Holder inequality

“ Hnm(da’ f)” dp. p < “ Hnm(da’ f)” dp,.2 ” ﬁ,* ‘ 1‘3"26/ : "‘p“ 2pi2 = pys
our theorem follows for 0 < p <1 as well. |

Since the Hermite interpolating polynomials are defined by the values of
function and its derivatives at interpolating knots, it is clearly unrealistic to
expect that the right-hand side of (4.2) or (4.3) be replaced by L” norm.

Let E,(f)=infp_, I /— Pl .. From [5, Theorem 2, p. 172] there exists
a polynomial R, e I1,, such that

1= RSB Vyn 1 el L (44)

for 0 < j<m— 1. We now prove our theorems on the mean convergence of
the Hermite interpolating polynomials.

THEOREM 4.2, Let m21, 0< p< + . Let du be a generalized Jacobi
distribution satisfying (3.11), and ue GJ such that up e L' for fixed |,
0<j<m—1.1If

(') P2 pm—J=Drye ! (4.5)
then

lim |H2(do, Y=, ,=0, VieCm . (4.6)
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Proof. Since H,,(dw, ) is a projector from C™” ! to [1,.._., by (4.4),
we only need to estimate ||H )(dx, f— R,)||, ,- By applying the Bernstein—
Markov inequality [16, Theorem 5] repeatedly, we have

|‘H£|jn)1(da’ f- Rn)” u, p < an “Hnm(da’ f— Rn) (P7‘j|1u, P

which, by (4.4) and Theorem 4.1 with r=m — 1 and ' =u¢ ", is bounded
by cE,(f" ") —0. 1

Our next theorem gives the order of convergence. The proof is similar to
the one above. We take =0 in applying Theorem 4.1,

THEOREM 4.3. Let assumptions be the same as in Theorem 4.2. If
(') "2 @ Py L, (4.7)
then
I s, [) = [Ny S cELf DYn™ =70t Yfe ™l (48)

Remark 4.1. When m =1, Theorem 4.2 is proved by Nevai [15], where
{45) is proved to be necessary as well Note that when m=1,
conditions (3.11) are satisfied by all generalized Jacobi distributions. For
m=2, (4.5) for j>0 and (4.7) can be shown to be necessary by the results
in Nevai and Xu [18], where Theorems 4.2 and 4.3 are also proved for
m=2 and a’=yw with w being an integrable Jacobi weight function. For
the Jacobi distributions, these two theorems are proved by Vértesi and Xu
[25], where {4.5) and (4.7) are shown to be “almost” necessary for even
integer m. We note that the method applied in these papers is different
from ours. In the present generality, (4.5) for j>0 and (4.7) may still be
necessary, but it seems to be a difficult task to prove it.

We now consider other interpolating polynomials. Since the approach is
similar, we illustrate the idea with the Hermite—Fejér interpolating poly-
nomials, Q,,.(dx, /), which are defined to be the unique polynomials in
I,, _, such that

Qnm(da!f; xkn(du)):f(xkn(da))’ 1 gkén

U d, f, x,(do)) =0, 1<k<gsn 1<j<m—1.

(4.9)

Unlike the Hermite inerpolating polynomials, Q,,.(d%, /) are not projec-
tion operators. Their convergence behavior is described by using the
weighted modulus of continuity defined in [3],

w,(f, )= sup |If(-+he(-)/2)—f(-—ho(-)2] .,

O<h<t
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where if x + A@(x) ¢ (—1, 1), the expression inside | -|| ., is taken to be zero.
It is known from [3, Theorem 7.2.1, p. 79 and Theorem 7.3.1, p. 84] that
for the polynomial P, of best approximation of f € C,

1
If =Pyl <co, ( 7 ;>

and
H(pIP(Ii“ <an(,l) (f 1) ]>0
n o TR @ 2 n b -

THEOREM 44. Let m=2 and 0 < p < + oo, Let dx be a generalized Jacobi
distribution satisfying (3.11) and ue GJ be integrable. If

(') "2 ye L {4.10)

then

1
1Ot ) =Ml <co,(fin). Wre, ()

The proof of this theorem is similar to that of Theorem 4.2. Let P, be the
best approximation polynomial to f. By Theorem 4.1 with t=0, we can
obtain

-1

”Qnm(daﬁ Pn) - Hnm(d:x’ Pn)”u, P <c Z ”(ijL,)Il el /’1/

j=1

< cw, (f,%)

Since H,(dx, P,)=P,, our theorem follows easily from the triangle
inequality. We leave the detail to the reader.

Remark 42. For m=2, it follows from the general results of Mate
and Nevai [7] that the condition (4.9) is also necessary for (4.10). For
m=2 and o' =yw with w an integrable Jacobi weight, Theorem 4.4 has
been proved by Vértesi and Xu [26]. If we want lim,_, ||Q,..(d2, f)—
fl. ,=0 instead of (4.10), the condition (4.9) might be relaxed to
(a'@) ™2 pm-Drye ! For m=2 and o =yw with w being an
integrable Jacobi weight function, this is indeed true as shown by Nevai
and Vértesi [17]. For the generalized Jacobi distributions, it is not clear
whether it will follow from our theorems. For the corresponding results for
the Jacobi distributions, see [21, 24, 27].
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We may apply our methods to other interpolating polynomials, for
example, those considered in [27]. Since the application is straightforward,
we shall not elaborate any further. We close this paper with the following
remark. The method we presented in this paper leads to the results of
the general nature, but the condition (3.11) may not be sharp. The mean
convergence of the Hermite interpolating polynomials based on the Jacobi
distribution (I;(dx}=0, 1<i<r) is proved in [25] under the following
conditions. If m is odd, I'/(dx)> —3—2/m, i=0, r+1, and if m is
even, I'(da)=—-3—1/m or I(da)z—-%—2/m, i=0 r+1, and
max{lo(dn), I, (do)} —min{o(da), I',, (d2)} <2/m. These conditions
are less restrictive than those of (3.11). Vértesi [24] proved that these
conditions are almost (with the difference of > and >) sharp. Thus, the
conditions of this type are necessary in our theorem, but it shows that
(3.11) is not sharp. See also Remark 3.1. Thus the question is whether
(3.11) can be improved or it reflects the limitation of the method.
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